
Northwest Numerics and Modeling, Inc. Z-mat detail

Constitutive Equations
In a Finite Element code, constitutive equations are used at each integration point to simulate material behavior. Z-mat
adds capability by providing advanced constitutive equations based on the rigorous thermodynamic state variable formu-
lation. The primary numerical task for material simulation code for FEA calculations is to provide the value of the stress
tensor and the state variables at the end of a loading increment, knowing the values at the beginning of the increment and
a trial strain increment. More precisely, we can define an “object” BEHAVIOR as the collection of :

• primal (prescribed) variable (e.g. strain) and dual (associated) variable (e.g. stress)

• set of state dependent variables V

• set of auxiliary variables, A, not necessary for the computation, but used in the post-processing

• external parameters, P, prescribed by the user and acting like an external load (e.g. temperature in
a mechanical uncoupled calculation);

• material parameters, M , to be identified for each material.

The constitutive equations are normally expressed as a first order ordinary differential system (ODE), the derivative of the
state variables being defined as functions of the prescribed primal variable, of A, P and M . The integration of this system
can be made by explicit and implicit methods. Both techniques are included in Z-mat as follows :

• Runge-Kutta method with automatic time stepping

• Modified midpoint (θ-method), solved with a Newton algorithm

The explicit integration is easier to implement, and therefore is used for fast prototyping. Implicit integration however
demands the definition of the local Jacobian matrix defining the behavior which is a more complex affair, but the method
is more robust for large time steps, as it provides (for free!) the information needed to compute the global consistent
tangent matrix, and therefore permit quadratic global convergence.

Z-mat treats all model formulations in the most general sense, employing object-oriented design to achieve a high level of
flexibility. With this approach, the models are described in terms of material building “bricks,” such as yield criterion,
isotropic or kinematic hardening evolution, or viscoplastic flow. A model is much more powerful with this approach
because all the different “brick” types can be combined by the user to effectively make new models at run-time. In fact,
even the coefficients are generalized (abstracted), allowing
constant values, tabular values, or c-type syntax functions.

How to use Z-mat
There are two ways of using Z-mat

User-mode

Developer-mode

As many constitutive equations are already implemented in
Z-mat (see next page), most users can simply make use of those
in their calculations. A small change in the ABAQUS input
file is necessary to access the Z-mat library, and an external
material definition file must also be created.

The input file modifications must give the material name, which
will become the name of an external material definition file to
control Z-mat. The number of state variables is also required -
Z-mat does not use any information regarding corfficients or
material parameters from the ABAQUS input. Any number of
Z-mat materials is accepted in the same run.

ZebFront user
programs

Processor
Language
ZebFront

generated
C++

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

ABAQUS

UMAT

Z-mat

Models
User

C, C++ programs
User Fortran, C, C++

Developer ModeUser Mode

ABAQUS

UMAT

Z-mat

Figure 1. The two modes of using Z-mat

Northwest Numerics and Modeling, Inc. Z-mat detail

The modifications of the ABAQUS .inp file are essentially constant between different analyses, except for the number of
integrated state variables (using the DEPVAR keyword). For a given Z-mat material file, the utility program Zpreload will
output all the lines which are needed. Note that Z-mat does not use the abaqus input material coefficients, but this line is
still needed by ABAQUS to use the UMAT routine.

The Z-mat material file customizes the way materials are entered into ABAQUS. Local convergence and automatic time
step parameters can be adjusted, material rotations specified, and variables initialized. The material definitions itself is
marked by the keyword ***behavior, followed by a keyword for the type of behavior, and its options. All material “build-
ing bricks” are constructed in this way, and each such “object” creation may be added to with user programs.

Some Bricks Available
� All coefficients are variable, allowing constant, tabular, step change, or interpreted high-level

function definitions.

� Model �bricks�: viscoplastic rate laws, yield criteria, isotropic and kinematic hardenings

� Linear thermo-elasticity; isotropic, orthotropic, anisotropic, etc.

� Generalized Maxwell Viscoelasticity.

� Porous plasticity for Gurson damage or powder compaction. This model provides additional
capabilities to that in ABAQUS, including other potential formulations such as Rousillier, etc.

� Complete Chaboche model with coupled damage in explicit/implicit integration. Modifications
for multipotential flow (e.g. creep, viscoplastic, and time independently plasticity combined),
static recovery on all hardening variables, coupling with damage.

� .No limit to the number of kinematic hardenings, interaction with criteria, state coupling of
variables, isotropic evolution of saturation rate, linear-nonlinear evolution with a criterion, etc.

� MATMOD model of Miller

� Bodner-Partom viscoplastic model

� SUVIC, SUVIC-D model of rock with damage

� Micro-macro models for single and poly crystals. Polycrystal yield deforms and expands using
slip-plane isotropic and kinematic hardening. Complex flow rules, Taylor and self hardening.
Crystals for FCC, BCC, and HCP.

� Composite materials, including anisotropic damage with fiber closures.

� Implicit/Explicit material integration with consistent tangent matrices.

User Mode
Using the material laws contained in the Z-mat library involves changing the material definition in the ABAQUS .inp file,
and creating a Z-mat material definition file. These Z-mat input files may be stored in a common location, allowing a site
to easily manage their different material inputs. The following figure shows examples of these two files:

ABAQUS .inp file

*NODE, NSET=all
1,0.,0.
...
**-----------------------------------
*SOLID
SECTION,ELSET=ALL,MATERIAL=steel
*MATERIAL,NAME=steel
*DEPVAR
 13
*USER MATERIAL,CONSTANTS=1
0.0
*USER SUBROUTINES,INPUT=umat.f

Z-mat material file

***material
 *integration theta_method_a 1.0 1.e-12 1500
***behavior gen_evp
 **elasticity isotropic
 young 210000.0
 poisson 0.33
 **potential gen_evp ep
 *criterion mises
 *flow plasticity
 *isotropic constant
 R0 150.0
 *kinematic nonlinear
 D 69.31
 C 8317.77
***return

Northwest Numerics and Modeling, Inc. Z-mat detail

Developer
Extended use of Z-mat can be made by adding other levels in the
library. In fact, the large number of predefined constitutive models
represent only a part of the code — the developer also has access to:

� basic objects, which can be used in his own constitutive equa-
tions, offering the power of already tested bricks of behav-
ior: for instance using the "elasticity" object allows the user,
without any effort, to have a direct access to any kind of
elasticity in the code without any flag in the local code : the
type of elasticity is automatically determined by the code
from the data file, and the corresponding behavior is then
dynamically applied to the material.

� integration methods; the developer has then the choice of
using the integrators only, or use basic objects in the inte-
grators.

The developing user can program any number of additions, including multiple additions of the same “type.” For example,
multiple new material behaviors can be added, along with additional isotropic hardening “bricks.” These later models can
be used by the new user behavior models, and by all the standard Z-mat library models. The input interface for user
“bricks” is also exactly the same as for the standard models supplied with Z-mat, so user extensions are seamlessly inte-
grated into the library (in contrast to the user definition of umat in the abaqus file).

Additions may be programmed in C++, or use the “material programming” language of ZebFront. ZebFront adds special
commands for declaring material model data and functions (such as scalar, vector, or tensorial state variables, and coeffi-
cients), and automatically generates material file read functions and function prototypes. The end result is a material
model which can be close to a 1:1 listing of the model equations. These equations can be written in full tensor or matrix
form as well, eliminating many program loops.

A typical ZebFront model includes a “class” declaration, where the model data structures are defined, a post step calcula-
tion, and either or both explicit or implicit integration implementations (the model equations). The class can be “derived”
from more than one base type, which determines the functionality of the class. Often material models are derived from
both BASIC_NL_BEHAVIOR and BASIC_SIMULATOR to provide FEA behavior and simulation with the same code.

To assist with the developer mode, the Z-mat library comes with a set of development tools to generate makefiles from
multiple source files, link shared libraries on many platforms, and manage multiple architectures. Debugging tools are
provided as well, to assist in debugging code running in ABAQUS. An example of the Z-mat developer steps is shown
below:

Integration
Methods

Basic
Constitutive
Model
Objects

Predefined
Constitutive
Models

Runge-Kutta
Implicit Midpoint
...

Elasticity
Thermal Strain
Isotropic Hardening
Viscoplastic Flow
Kinematic Hardening
...

Schematic for ZebFront Program

@Class ZUSER : BASIC_NL_BEHAVIOR {
 @Name Zuser;
 @SubClass ELASTICITY E;
 @Coefs C1, C2;
 @VarInt evi, eel, ...;
 @VarAux X,Y;
};

@StrainPart { /* post increment calcs */
 evi = eto - eel;
 sig = *E*eel;
}

@Derivative {
 devi = ... ;
 deel = ... ;
}

Compilation

 % Zsetup

 % Zmake

Z-mat material file

%
% In file steel ...
%
***material
 *integration theta_method_a 1.0 1.e-9 25
***behavior Zuser
**elasticity isotropic
 young 210.e3
 poisson 0.3
**model_coef
 C1 temperature
 100.0 23.0
 50.0 500.0
 C2 500.0
***return

ABAQUS Input file (from running Zpreload steel)

*SOLID SECTION, ELSET=ALL, MATERIAL=steel
*MATERIAL,NAME=steel
*USER SUBROUTINES, INPUT=umat.f
...

Northwest Numerics and Modeling, Inc. Z-mat detail

Example 1: Generalized Chaboche Model
This is an example using the generalized Chaboche model available in the Z-mat library (i.e. User Mode). A particular
form of the model will be used, including thermal strain, non-linear isotropic hardening, linear and non-linear kinematic
hardening, and some coefficients which vary with temperature.

The behavior model is only a framework for building up particular hardening/criterion/flow/etc combinations. The basic
form of the model is stated simply below:

thtotiel

elE

&&&& +=+
=

∑
:

where the i& terms are individual components of inelastic deformations. Evolution for these deformations is determined by
a particular inelastic dissipation potential. Several different forms of dissipation potential are available in Z-mat, to pro-
vide models including the classical Chaboche viscoplasticity, single crystal deformation, fully associated plasticity, spe-
cial plasticity for ratchetting, modified static recovery, among others. For Chaboche viscoplasticity, the potential the
following general equations can be written:

),(

)(),(3
2

vfvvwith
f

v

CvRff iiii

&&&& =
∂
∂=

==−= ∑ XXXX

with f being the criterion, R an isotropic measure of the yield size (usually the yield point in uniaxial tension), v the
cumulated viscoplastic strain equivalent, and X a series of kinematic translations of the yield (back stresses). The model
uses material “objects” for the criterion, the rate equation for v, the equation for R, and each of the kinematic variables.

To start the material file, the ***behavior keyword must be used
to indicate a generic behavior object is to be created. All such
objects will have a “class” keyword (here, behavior), followed
by a particular type of that class. For this model, the type is
gen_evp for generalized elasto-viscoplastic. It should be noted
that the asterisks in the Z-mat file indicate not only keywords,
but a hierarchy of sub-commands. Thus all keywords of **-level
are sub-commands of the behavior, and the next ***-level com-
mand (here ***return) terminates the behavior read. For this
model, the elasticity matrix, thermal strain, and potential key-
words are used.

The potential object is the most interesting one here, as it defiles
all the plasticity characteristics. The potential model chosen is
again named gen_evp (but could be one of many others), and the
characters following are an optional name for the potential. Out-
put variables and coupling use this user determined name.

criterion mises []2
1

)(:)(2
3 XsXs −−=f

flow norton
n

K
fv =&

isotropic nonlinear ()bveQRR −−+= 10

kinematic linear vp&& =2

kinematic nonlinear 22 2

3
X

C

D
vvp &&& −=

Note that the model supports any number of kinematic harden-
ing variables, and all coefficients in the model may be variable.

%
% Example Chaboche material file
% with some different objects and coefficient
% input formats
%
***behavior gen_evp
 **elasticity isotropic
 young function
 200000.-100.*temperature^2.;
 poisson 0.3
 **thermal_strain isotropic
 alpha temperature
 0.12500E-04 0.0
 0.14500E-04 500.00
 0.14500E-04 1000.00
 **potential gen_evp ev
 *criterion mises
 *flow norton
 n 4.
 K temperature
 200. 20.
 300. 650.
 250. 950.
 *isotropic nonlinear
 R0 temperature
 400. 0.
 300. 1000.
 Q -200.
 b 4.
 *kinematic nonlinear
 D function 800.+2.5*(temperature-475.)^2;
 C 75000.
 *kinematic linear
 C 1050.
***return

Northwest Numerics and Modeling, Inc. Z-mat detail

Example 2: User Model with Explicit Integration
For this example a user model is created using the ZebFront preprocessor. The model adds an effect in isotropic hardening
to account for aging by adding a term R* to the yield function f :

() *RRJf −−−= X
where R* depends upon a new state variable a used to characterize material ageing:

)1(*
0

* aRR −=)1(
1

aa −=
τ

&

Declaration of material parameters, state dependent, and auxiliary variables is done by means of the @Class keyword
(lines 1 to 9 of the ZebFront model below). Compared to a standard Chaboche model, this ageing model introduces two
new material parameters R

0
* and τ declared at line 3, while the additional ageing a variable is declared at line 6.

In the second block @StrainPart keyword at lines (11 to 15) the user has only to define how to derive stress s from the
different variables manipulated by the model. Note that high level material objects, such as the ELASTICITY class defined
in the Z-mat library can be called directly in a user model leading to fast and easy implementation (lines 13,18).

Then, for explicit Runge-Kutta integration, differential equations governing the evolution of the state variables are de-
fined in the last program block @Derivative keyword from line 17 to 36. C++ variables names such as dvarname are
automatically generated by ZebFront for each state variable varname declared at lines 5,6, and all data is initialized
properly for the calculation.

The final implementation is very concise (only 36 lines of which one third is simply declaration) for quite a complex
model. Use of high level mathematical objects such as tensors and their associated operators allows the user to write lines
of code that closely look like the mathematical equations defining the model. More involved examples using implicit

integration and the returning of consistent tangent
matrices are dealt with in following examples. This
model runs with any element formulation using the
BFGS solution procedure.

An example material input file for this model is
shown (below right). Note that the input syntax fol-
lows exactly the that for the “native” gen_evp be-
havior of the last example. All input handling is au-
tomatically generated for this example, but addi-
tional user code could be given for special situa-
tions. Any of the coefficients can be variable here
of course. Thermal strain is also automatically ac-
counted for.

 1 @Class AGEING : BASIC_NL_BEHAVIOR {
 2 @SubClass ELASTICITY E;
 3 @Coefs R0, Q, b, R0_star, tau;
 4 @Coefs K, n, C, D;
 5 @tVarInt eel, alpha;
 6 @sVarInt evcum, age;
 7 @tVarAux evi, X;
 8 @sVarAux R, R_star;
 9 };
 10
 11 @StrainPart {
 12 evi = eto - eel;
 13 sig = *E*eel;
 14 if (m_flags&CALC_TG_MATRIX) m_tg_matrix=*E;
 15 }
 16
 17 @Derivative {
 18 sig = *E*eel;
 19 X = (2.0*C/3.0)*alpha;
 20 R = R0 + Q*(1.-exp(-b*evcum));
 21 R_star = R0_star*(1.0-age);
 22
 23 TENSOR2 sigeff = deviator(sig - X);
 24 double J = sqrt(1.5*(sigeff|sigeff));
 25 double f = J - R - R_star;
 26
 27 deel = deto;
 28 dage = (1.0-age)/tau;
 29
 30 if (f>0.0) {
 31 devcum = pow(f/K,n);
 32 TENSOR2 norm = sigeff*(1.5/J);
 33 deel -= devcum*norm;
 34 if (C>0.0) dalpha = devcum*(norm - D*alpha);
 35 }
 36 }

elE :=
X C

3
2=

)1(0
bveQRR −−+=

)1(*
0

* aRR −=

Xs −=eff

effeffJ :
2
3=

*RRJf −−=

τ/)1(aa −=&

n

K
fv =&

J

f effn
2

3=
∂
∂=

nvvp && =
][n Dvvp −= &&

***behavior ageing
 **E isotropic
 young 80000.
 poisson 0.3
**model_coef
 K 1200.0
 n 3.0
 C 20995.0
 D 1105.0
 R0 400.0
 Q 0.
 b 1.
 tau 2000.
 R0_star -200.
***return

Northwest Numerics and Modeling, Inc. Z-mat detail

Example 3: Implicit Integration with Tangent
The last example used the explicit Runge-Kutta integration scheme. Explicit integration is easier to write, as only the rate
equations are needed, but is less accurate for large time steps and does not provide a good tangent matrix for the global
solution proceedure. The real benefit of explicit integration is that it allows “rapid prototyping” of material models. This
section in contrast illustrates the implementation with a modified midpoint implicit method (θ-method) which yields an
efficient final implementation. In place of the @Derivative subroutine, one has to specify the residual and the Jacobian
matrix by means of the @CalcGradF subroutine, as shown below for a simple Norton creep model.

Over each time increment ∆t the constitutive equation for this model is written in terms of assumed increments of the state
variables. For a given set of such increments, the following residual is written:

n

vthtotelel K

f
tvFv ∆−∆=∆+∆−∆+∆=)(nF

where the tensorial elastic deformation e
el
 and the viscoplastic cumulated deformation v are state dependent variables

declared respectively as eel and evcum in the definition of the ZebFront code below (at lines 5 and 6). Upon conver-
gence, this residual will be close (by an adjustable limit) to zero. The corresponding residual is defined at lines 32-35 of
the ZebFront code (the F vectors are initialized to the variable increment, and all diagonal terms of the Jacobian are
already initialized to unity).

As this set of equations will be solved by a Newton-Raphson algorithm to find the increment of state dependent variables
De

el
 and Dv one must also specify the partial derivatives of the residual in terms of the each variable. C++ variables are

automatically generated with names f_vec_varname for the residual and dvarnamei_dvarnamej for the partial derivatives
based on the declaration of a varname state dependent variable (@VarInt declaration). The Jacobian matrix is then

automatically assembled to form the system
of equations solved at each Newton-Raphson
iteration:









∆
∆









=

∆∂
∂

∆∂
∂

∆∂
∂

vR
el

R

v

v

el

el

v

el

el

elR RR

1

Note that the 1,1 component of the inverted
Jacobian can be used to find the tangent ma-
trix:

[]

[] []elel
eltot

el
tot

el

FF

F

11

1

−−

−

∇=∇
∂
∂=

∆∂
∆∂

∇=
∆∂
∆∂

E

 1 @Class NORTON_BEHAVIOR : BASIC_NL_BEHAVIOR {
 2 @Name norton;
 3 @SubClass ELASTICITY E;
 4 @Coefs K, n;
 5 @tVarInt eel;
 6 @sVarInt evcum;
 7 @Implicit
 8 };
 9
 10 @StrainPart {
 11 sig = *E*eel;
 12 SMATRIX tmp(psz,f_grad,0,0);
 13 if (Dtime>0.0) m_tg_matrix=*E*tmp;
 14 else m_tg_matrix=*E;
 15 }
 16
 17 @CalcGradF {
 18 sig = *E*eel;
 19 f_vec_eel -= deto;
 20
 21 TENSOR2 sigeff = deviator(sig);
 22 double J = sqrt(1.5*(sigeff|sigeff));
 23
 24 if (J>0.0) {
 25 TENSOR2 norm = sigeff*(1.5/J);
 26 f_vec_eel += norm*devcum;
 27 f_vec_evcum -= dt*pow(J/K,n);
 28

 29 SMATRIX dn_ds = theta*devcum*(unit32 - (norm^norm)/J;
 30 TENSOR2 df_fs = tdt*n*pow(J/K,n-1)/K *norm;
 31

 32 deel_deel += dn_ds*(*E);

 33 deel_devcum += norm;
 34
 35 devcum_deel -= df_fs*(*E);
 36 }
 37 }

elE :=

Xs −=eff

effeffJ :2
3=

J

f effn
2

3=
∂
∂=

n

v KJtvF ∆−∆=

)(thtotelel vF n ∆+∆−∆+∆=

[]nn1
n

⊗−∆=
∂
∂∆

J
vv

2

3θθ

E
n

1
n

1
∂
∂∆+=

∆∂
∂

∂
∂∆+=

∆∂
∂

vv
F

elel

el θθ

n=
∆∂

∂
v

Fel

nE
1−∆=

∆∂
∂ n

el

v

K

f

K

tnF θ

Northwest Numerics and Modeling, Inc. Z-mat detail

A Small Application
This simple example illustrate the influence of constitutive equations on structural results, and provide an idea of the CPU
time spent for such nonlinear material computations. This section shows finite element simulation for a simplified 3D
structure under cyclic thermomechanical loading, which mimics the critical part of a combustion chamber for a car en-
gine. The interest of having a good description of the material is demonstrated, and comparison between the CPU times
obtained for the various models is made.

The finite element model is a three-dimensional solid (continuum) involving C3D20 and C3D15 type elements with full
integration. The mesh consists of 531 elements and 2985 nodes. The lateral faces are fixed in x and y direction, so that
thermomechanical stresses are produced when a non homogeneous temperature field is applied (fig.2a). Figure 2b shows
the temperature cycles applied during analysis.

The component is made of an aluminium alloy. It will be modeled successively by three types of constitutive equations :

� time independent plasticity;

� viscoplasticity;

� viscoplasticity with ageing.

The material dependent parameters will be given in the material files used by Z-mat.

Results

The results of calculations are shown for the time corresponding to the maximum of temperature. The results of elastic
material are discussed first. The contours of the von Mises equivalent stress are given in figure 3a.

When a nonlinear behavior is used, stress redistribution occurs in the component. The first model used is a Chaboche's
model with non linear kinematic hardening, as described by Abaqus option *PLASTIC, HARDENING=COMBINED.

The results are illustrated in the curve on the next page, and figure 3b which shows the equivalent plastic strain. The curve
on the next page (bottom) is the evolution of the diagonal components of the stress and strain tensor of the material in the
critical zone. The maximum tension stress is equal to 232 MPa, while the compression stress is equal to -219 MPa.

Time independent plasticity is generally not sufficient to have a good evaluation of the stress state in the component, due
to i) the influence of creep during the hold time, ii) ageing of the material at high temperature. In order to take into
account the time dependence of material behavior, the previous model version is transformed into a viscoplastic frame-
work. This can be made with only a slight change in the material file, in Z-mat's syntax, as shown at top,right of the next
page.

Figure 2. a) Temperature contours. b) Thermal cycle.

TEMP VALUE
+1.12E+02

+1.35E+02

+1.58E+02

+1.81E+02

+2.04E+02

+2.28E+02

+2.51E+02

+2.74E+02

+2.97E+02

+3.20E+02

0.0 0.1 0.2 0.3 0.4 0.5

Temps (s) [x10 3]

80.

120.

160.

200.

240.

280.

T
e
m
p
e
r
a
t
u
r
e

(
C
)

XMIN 7.500E+00
XMAX 5.200E+02

YMIN 5.750E+01
YMAX 2.856E+02

TEMPER_259

Northwest Numerics and Modeling, Inc. Z-mat detail

** ELASTOPLASTIC MODEL

***behavior gen_evp

**elasticity isotropic

young , temperature

76000.0 20.0

72000.0 100.0

60000.0 300.0

poisson 0.33

**potential gen_evp ep

*criterion mises

*flow plasticity

*isotropic constant

R0 , temperature

160.0 20.0

143.0 100.0

122.0 200.0

74. 300.0

*kinematic nonlinear

D ,temperature

155. 20.0

155. 100.

155. 300.

C , temperature

21700. 20.

22000. 100.

8460. 200.

3780. 300.

***return

...

** VISCOPLASTIC MODEL

***behavior gen_evp

**elasticity isotropic

young , temperature

76000.0 20.0

72000.0 100.0

60000.0 300.0

poisson 0.33

**potential gen_evp ep

*criterion mises

*flow norton

n 8.5

K temperature

250. 20.

256.5 200.

226.5 300.

*isotropic constant

R0 temperature

80.0 20.0

63.0 100.0

52.0 200.0

4. 300.0

*kinematic nonlinear

D temperature

155. 20.0

200. 100.0

420. 300.

C temperature

21700. 20.

22000. 100.

8460. 200.

3780. 300.

***return

-5. -4. -3. -2. -1. 0.

EpsilonP33 [x10 -3]

-200.

-160.

-120.

-80.

-40.

0.

40.

80.

120.

160.

200.

S
i
g
m
a
3
3

XMIN -5.624E-03
XMAX 0.000E+00

YMIN -2.318E+02
YMAX 2.187E+02

EP_SIG_259

Northwest Numerics and Modeling, Inc. Z-mat detail

noitaluclaCfoepyT spetS sretilatoT UPClatot oitaR

citsalE cnI1 1 02

suqabA-citsalP cnI21 34 787 0.1

tam-ZcitsalP cnI21 62 409 51.1

tam-ZcitsalpocsiV cnI21 63 1571 22.2

gniga-ocsiV cnI21 63 7.7371 02.2

Figure 4a (above left) shows the effects of ageing on the material hardening. It is observed that is influences the isotropic
hardening. After one hundred hours ageing period, a progressive softening can be seen after ageing. The full numerical
implementation of the related model was shown as example 2 on page 5.

The number of increments needed for per-
forming one cycle with each model type is
given in in the table at right, together with
the total CPU time. The Chaboche plastic
model in Z-mat takes 15% more time than
for Abaqus native computations. That has
to be related with the additional exchanges
generated by umat 's use. Viscoplastic mod-
els require more CPU time, since the yield
limit is lower in that case, so that the num-
ber of nonlinear increments is bigger. The
time needed remains nevertheless quite rea-
sonable (2.2 factor).

Initial state
Aged 100 h

(MPa)σ

ε

-200

-150

-100

-50

0

50

100

150

200

250

-0.0065 -0.006 -0.0055 -0.005 -0.0045 -0.004 -0.0035 -0.003 -0.0025 -0.002 -0.0015

S
ig

m
a3

3

Epsilon33

visco
visco_age

plastic

Figure 3. a) Contours of von Mises stress. b) Contour of equivalent plastic strain magnitude.

MISES VALUE
+2.28E+02

+2.99E+02

+3.71E+02

+4.42E+02

+5.14E+02

+5.85E+02

+6.57E+02

+7.28E+02

+8.00E+02

+1.50E+03

PEEQ VALUE
+1.24E-04

+1.20E-02

+2.39E-02

+3.57E-02

+4.76E-02

+5.95E-02

+7.13E-02

+8.32E-02

+9.51E-02

+1.07E-01

